AT&S

ELECTRONIC COAST EVENT

Business Unit – Electrical Solutions Application Engineering

2024-10-31

Ƴfin

AGENDA TITLE

- 01 Introduction AT&S
- 02 Embedding: Capabilities + Design Rules
- 03 Modified Semi Additive Process (mSAP)
- **04** Substrate Like PCB (SLP)
- **05** 2.5D Cavity + Semi Flex

- **06** ZiC Technology
- 07 Already developed & manufactured Applications
- **08** Plant capabilities

WORLD LEADING HIGH-TECH PCB & IC SUBSTRATES COMPANY

*Source: Prismark, CY2022, as of 15.05.2023 **Source: Prismark, CY2022, as of 31.08.2023

MARKET SEGMENTS & PRODUCT APPLICATIONS

BU ELECTRONICS SOLUTIONS

6

AT&S PRODUCT PORTFOLIO

AT&S SPECIAL TECHNOLOGY PORTFOLIO

Innovative production-process for radically thin PCBs used in highly compact devices

Space-saving through vertical embedding of components leads to significant form factor reduction

mSAP Technology

Z-Interconnect is AT&S's answer to the arising challenges of miniaturization, high signal speeds, high density and increasing layer count

Z-Interconnect Technology

ECP[®] Technology

Cost-effective creation of cavities in multilayer circuit boards for miniaturized designs

2.5D[®] Technology

WHAT IS EMBEDDING TECHNOLOGY

AT&S ECP® - Embedded Component Package

ECP® (Embedded Component Packaging) uses the free space in an organic, laminate substrate (Printed Circuit Board) for **active and/or passive** components

Components are integrated in the core of the PCB and connected by copper plated micro vias

9

AT&S EMB TECHNOLOGY OVERVIEW

Production

In mass

In Process Evaluation The first choice for cost-efficient packaging of passive and smallsize active components

CENTER CORE EMBEDDING

The preferred packaging technology for power applications with double-sided component connection

PARSEC²

The thinnest possible embedded package for active components with a wide range of metallization types

Process Validation ongoing

EMBEDDING OF COMPONENTS

ECP[®]

The first choice for cost-efficient packaging of passive and small-size active components

CENTER CORE EMBEDDING

The preferred packaging technology for power applications with double-sided component connection

PARSEC²

The thinnest possible embedded package for active component with a wide range of metallization types

Integrate active and passive Components

- Bare dies
- Single / double sided connected
- Si / GaAs / GaN ...
- Pad termination: Copper, Au, Al

Performance Benefits

- Reduce Transmission losses
- Minimize Feeding Network length
- Split of Signal Path and Thermal Path
- More accurate Signal Path due Micro Via interconnection

Additional Benefits

- High Reliable Performance
- Stable against vibration
- Increase Packaging density
- Reduce weight
- Reverse Engineering protection

EMBEDDING OF COMPONENTS

Center Core Embedding Process Flow

EMBEDDING OF COMPONENTS

Center Core Embedding

Component Requirements

Component Parameter							
1 Min. Size [µm]	1 Max. Size [mm]	2 Min. Nominal Thickness [µm]	2 Max. Nominal Thickness [µm]	Thickn ess Tolera nce	3 Min. Pad Diameter [µm]	Pad Surface	4 Copper Thickness [µm]
300 x 600 (0201)	8 x 8	60	300	± 10 µm*)	200 (LaserØ: 80 μm)	Copper only	Min. 5 (preferred: 7 – 10)

*) Preferred tolerances, wider tolerances have to be discussed during specific project review

AT&S Electronic Coast Event – 2024-10-31

Electrical Test

> Capabilities

- Open / Short (please refer to the chapter "General Capabilities & Design Rules") \checkmark
- ✓ Passives (Resistor & Capacitor)
- ✓ Actives (Continuity / Diode Test)

> Test parameter

✓ Passives *)

Resistor			С	apacit	or
Min.	Max.	Toleranc e	Min.	Max.	Toleranc e
1 Ω	10 MΩ	±0,5 %	0.4	100	±2%
10 MΩ	50 MΩ	±2%	0, T PF	μF	± 0,03 pF

✓ Continuity – (Diode)Test for Actives

A diode is defined as:

- a polar connection between two systems
- with defined voltage and current
- with plus/minus tolerances
- and with a optional voltage limitation for the test
- A single diode measuring consists of:
- the defined current

*) inductivities have to be discussed during specific project review

- the expected voltage
- the allowed tolerances and the voltage limitation which must not exceeded during the test to protect the diode.
- Note: Functional testing not available! Capabilities for actives has to be discussed during specific project review!

Electronic Coast Event - 2024-10-31

Curi	rent	Voltag e	
Min.	Max.	Max.	
100 µA	50 mA	10 V	

Electronic Coast Event - 2024-10-31

Embedded Component Scope*)

Legend				
Black line	Package outline			
Red line	Cavity outline			
Grey	component			
Yellow	Base material			
Brown	copper			

2

AT&S

1) valid for a component thickness of max. 150 $\mu m,$ thicker components have to evaluated separately during project phase

*) For values which are not listed in this table, please refer to the chapter "General Capabilities & Design Rules"

Embedded Component Scope*)

8: Example (component t	o core ratio):
Nominal component thickness:	100µm
Tolerance:	± 10µm
Ratio Min:	1 : 1,05
Ratio Max:	1 : 1,3
Core thickness = nominal com	ponent thickness +
tolerance x	ratio
Core thickness min = (100μm - =115,5μm	⊦ 10µm) x 1,05
Core thickness max = (100μm 143μm	+ 10µm) x 1,3 =
Used core should be within 11	5µm and 143µm!!

1) For demonstrators only! Preferred option → no copper on CCE ECP® Core *) For values which are not listed in this table, please refer to the chapter "General Capabilities & Designation design

No.	Торіс	Parameter
7	Component to Component Thickness Variation: (Core Thickness < 200µm)	10%
1	Component to Component Thickness Variation: (Core Thickness > 200µm)	5%
	Rati Max. component thickness to base co	o: nominal core thickness (w/o pper)
8	Nominal Component thickness: 60µm up to 100µm	Min.: 1 : 1,05 Max.: 1 : 1,3
	Nominal Component thickness: 101µm up to 200µm	Min.: 1: 1,05 Max.: 1 : 1,15
	Nominal Component thickness: 201µm up to 300µm	Min.: 1: 1,05 Max.: 1 : 1,1
9	CU Thickness CCE Core ¹⁾	max 30µm (preferred 25µm)
	Cu to cavity edge ¹⁾	Min. 50µm
10	Laser – Diameter: Connection to Component Front	Depends on dielectric height*)
11	Laser – Diameter: Connection to Component Back	Depends on dielectric height*)
7 Core Thickness < 200µm)	Possible, difference max. 20µm	
12	Minimum Padsize for Mechanical drilled PTH	Min. DrillØ + 150µm (preferred + 200µm)
12	Distance PTH Edge to Component Edge (no copper on core)	175µm
15	Distance PTH Edge to Component Edge (copper on core) ¹⁾	250µm
14	Distance PTH Edge to Package Edge (dicing)	170µm (4 Layer board)
15	Distance Package Edge to Copper outer layer (dicing)	Min. 50µm (4 Layer) (preferred 100µm)
15	Distance Package Edge to Copper inner layer (dicing)	100µm

MSAP TECH OVERVIEW

Achievements with mSAP

- Increase PCB routing density for fine-pitch BGA packages (≤30µm line/spacing)
- Reduce the number of layers required for fan-out (or pressing cycles)
- Increase Component Pitch Density
- Reduce the overall PCB thickness
- Optimize signal transmission
- Higher performance at reduced mainboard sizes

Number of Traces	Required Line / Space Width
1	g ≥ Line Width + (2 x Space Width)
2	$g \ge (2 \text{ x Line Width}) + (3 \text{ x Space Width})$
3	$g \ge (3 \text{ x Line Width}) + (5 \text{ x Space Width})$

Conductor tracks standard

Conductor tracks mSAP

20

PROCESS FLOW

Subtractive vs. mSAP

Subtractive Process

1. Laser Drilling

2. Laser Via filling

3. Dry film

4. Developing

6. Strip Dry Film

mSAP Process

1. Laser Drilling

3. Dry film

4. Pattern Plating 5. Strip Dry Film

6. Flash Etching

Electronic Coast Event - 2024-10-31

MODIFIED SEMI ADDITIVE PROCESS (MSAP)

E - field distribution subtractive vs mSAP

22

re(Zo(1)) Setup1 : Sweep BottomToTopWid

- re(Zo(1)) Setup1 : Sweep BottomToTopW

350.

mSAP

250.00 300.00 BottomCopperWidth [um]

SLP

What is a SLP?

Substrate like pcb bridges the technology gap between pcb and IC substrate

A solution to achieve a higher density and a smaller form factor

24

SLP CONCEPT

Miniaturization & Modularization

Microprocessors

Electronic Coast Event – 2024-10-31

SLP @ AUSTRIA

Hinterberg Plant

Min. crd size	10 x 10mm
Min. PCB Thickness	0,1mm
Min. Line/Spacing	25µm/25µm (mSAP)
Thinnest PP	1017 (30-40µm)
Min. Laser Pad size/drill size	140/50µm
Min. pitch size	250µm
Material	MGC: 832NS Resonac: MCL-E-700G(R) MCL-E-705G(L) EMC: EM526
Surface Finish for SLP	ENIG ENEPIG OSP
Special	Dicing

2.5D® TECHNOLOGY PLATFORM

HDI Design guide lines

Solder mask in cavity

Electronic Coast Event - 2024-10-31

2.5D[®] SEMI-FLEXIBLE

- Usage of epoxy-based materials \rightarrow Cost advantage
- Polyimide-free \rightarrow Same assembly process as rigid PCBs
- No mechanical machining (e.g. depth routing) of flexible layers
 - \rightarrow Thin Build-up layers can be used
 - \rightarrow Tighter thickness tolerances of flexible layers
 - → Increased Bending Performance
 - \rightarrow Variable bending length possible

2.5D® semi-flexible

Depth routed flex

- Symmetrical build up with 1 or 2 flexible layers \rightarrow Very thin Stack-ups possible
- HDI design rules remain the same (also in flex BU-layers, but not in the bend areas)

2.5D® CAVITY FORMATION

Reasons for cavities

- Reduce the overall thickness of an assembled device by recessing "thick" components
- Improve thermal management by reducing Thermal Resistance
- Improve radio performance by removing PCB material below antennas
- Shielding by using metal plated cavity walls

Electronic Coast Event – 2024-10-31

2.5DR[®] SEMI-FLEX PROCESS FLOW

Semi-flex Technology with Damage Free Cap Removal – Process Flow

DAMAGE FREE CAP REMOVAL PROCESS

AT&S Shanghai has developed a new technical solution on cap removal method

The technology is combining laser pre-cutting and high accuracy depth control process with release layer technology.

Decap stackup design rules.

Reliable cap removal process without damage the flex region on Semi-flex PCB

Design Guidline For 2.5DR (HTB)	Value	Comment	
Multi-layer	>=2 Layers		
Ponding area	To be discussed with AT&S Engineering team	<u>AT&S offers mechanical design support (\rightarrow p. 5)</u>	
bending area	1 Layer or 2 Layers	1 Layer bending: PP only	
BU-Layer 1	PP: Glass cloth 1037, 0106, 1078, 1080		
BU-Layer 2	PP: Glass cloth 1037, 0106, 1078, 1080 or RCC-foil	PP is default, RCC-foil only by customer request	
Cu layer(s)	=55µm</th <th>No cross hatched design in flexible area</th>	No cross hatched design in flexible area	
Assembly	Bending jig is highly recomended for assembly	AT&S offers mechanical design support (\rightarrow p. 5)	

AT&S Electronic Coast Event – 2024-10-31

	BL	J-Layer 2		
	BL	J-Laver 1		
V VIII				

2,**⊕General Design rules**.

¢	Design Guideline for Shanghai 2.5DR Technology			
Category 🖉	Design item 🖉	Shanghai Guideline 🖉	Remark₀	
	2.5DR technology ↔	Only for flex on out layer design $*_{\varphi}$	Centeral core 2.5DR will be not allowed except the current CNL009000 (CNL009X), CNL601000 (CNL602X), CNL906000(CNL906X)	
		Bending direction.	One direction from out layer(Figure 1)-	
		Max. Bending times	5 times [@]	
	Surface finishing @	OSP.	Will update for other surface: Tin / ENIG /SIT	
	Flexible area in one card@	Max. 2	ø	
General 🦉	Flouible, bonding width	Min. 7mm(Bending <=90degree)↔	ę	
	Flexible behaing width a	Min. 10mm(Bending 90~180degree)	ца	
	Flexible Ink design 🖉	No SM opening allowed∉	ę	
	Flexible area structure.	PP, PP+PP or RCF+PP * ₂	 Glass fiber priority : 1037>1060>1080+ PP+PP is the default bending material, RCF + PP can be used only when customer required+ RCF only can be on the most outer layer+ 	
	Flex layer count 🐖	1 layers / 2 layers∉	ø	
Matorial	Flexible Base Material 🤞	Panasonic 1551WN /Shengyi S1000B/Doosan DSF-400G@	TFC required for other type of PP_{P}	
IVIALEI IAI 🖉	Rigid SM ink 🖉	Sun chemical CAWN2619	TFC required for other type of SM ink.	
	Flexible ink 🐖	Tamura PAF-300-8A₊	₽.	
	ID ink on Flex ink area@	TFC required for ID on flex ink area@	ø	

AT&S Electronic Coast Event – 2024-10-31

BU-Layer 2	
BU-Laver 1	

Design item	AT&S NAN Guideline	Remark
Bending	Bending direction	One direction from outer layer (Customer shall specify the bending direction in the data package)
Bending	Max. Bending times	Depending upon copper thickness, dielectric thickness, type of prepreg and copper distribution. But simulation to be done for the confirmation
Layer count	>/= 2 Layers	
Flexible layers	1 layer or 2 layer	Capable with prepreg only
Cu thickness on flexible layers	<50µm	Flexible area in inner layers shall be with less Cu density (<50%) Flexible area in outer layers shall be with high Cu density (>80%)
Surface finishing	ENIG, Immersion Tin & OSP	
Elovible, bonding width	Min. 3mm (Bending <45degree)	
Thexible behaing watth	Min. 12mm (Bending 45~180degree)	
Flexible Ink design	No SM opening allowed	Complete flexible area shall be covered with flexible SM ink
Flexible area structure BU-Layer 1 and BU-Layer 2	PP, PP+PP (Single or Max 2 Prepregs)	0106 or 1080 best suitable Prepreg type. 2116 prepreg ok with limited bending performance
Rigid SM ink	Sun chemical ink	
Flexible ink	Tamura PAF-300-8A	

Design Guideline

Item	Description	HTB [µm]	SHA [µm]	NAN [um]
C	Minimum Spacing between Solder Mask and cavity edge			
U	(outside cavity)	150	0	150
D	Minimum Copper edge (all layers) to cavity edge	200	200	200
ш	Flexible Solder Mask overlap on rigid Solder Mask	300	300	400
L	Minimum cavity depth (include Solder Mask)	Depends on layer construction	450	450
п	Maximum cavity depth (include Solder Mask)	Depends on layer construction	No Limit	No Limit
	Minimum tolerance (include flexible ink)	+/- 50	+/- 50	+/- 50
J	Rigid Solder Mask covering far away from transition line	75	50	150
K	Solder Mask opening in the rigid part to transition line	400	400	500
X	Tolerance for Flexible width	+/- 150	+/- 150	+/- 150
F	Maximum resin flow / Offset laser cut to depth routing	400	400	400

Remark: 1) No drilling (NPTH, PTH, Laser via) allowed in semi-flexible area 2) For drilling design on rigid area follow the Copper to transition line (D)

AT&S Electronic Coast Event – 2024-10-31

MMWAVE ANTENNA CONCEPT

Air cavity backed antenna vs. Standard

MMWAVE ANTENNA CONCEPT

Air cavity backed antenna

Electronic Coast Event - 2024-10-31

High Performance Antenna > Low Performance Antenna > SotA

CCE EMBEDDING APPLIED ON

POWER AMPLIFIER RFFE MODULE FOR 5G RADIOS

6GHz PA module with embedded GaN device size 16x10mm

embedded GaN device

Customer Segments:

Power Amplifier for 5G Radios 5G Sub 6GHz / 5G mmWave mMIMO modules 5G indoor FWA (fixed wireless Acess) 5G outdoor FWA

Advandages of embedded Solution:

20x Footprint reduction 30% better Bandwitdth 10% better module Efficiency 10% better module Gain 10% better average Pout 15% reduced thermal Resistance Halogenfree Base Material

Radar Sensor - 77 GHz Demonstrator

PAIN POINT

Example with TI AWR1443

AT&S DEVELOPMENT

Spec	ASFIW	Tolerance	Insertion Losses	Slot Antenna	Bandwith	Directivity Radiation
Covity dopth	500µm	?	High Loss		High	
Cavity depth	1200µm	?	Low Loss		Low	
Width @77Ghz	3.1mm	+/-100µm				
Clot Width				100µm	high	low
				300µm	low	high
Slot Length				2200µm		
Slot Tolerance (Ws / Ls)				<50µm		
Accuracy Tolerance (Sy /Sx)				<50µm		

- All in one Solution (Mainboard, Feeding Line, Antenna
- Using existing chipset (SMD Assembly)
- Megtron 2 Material (instead of RO3003)

Radar Sensor - 140 GHz Demonstrator

BROAD PORTFOLIO

From matchstick to satellite size

*Source: Prismark, CY2022, as of 15.05.2023 **Source: Prismark, CY2022, as of 15.05.2023

AT&S HINTERBERG

Headquarters - The PCB manufacturing site for high-mix, small and medium volume products with excellent R&D capabilities.

Technologies

- HDI up to 6-N-6
- Anylayer up to 14 layers
- Standard Multilayers up to 26 layers
- Substrate-Like PCB (SLP), L/S: 35µm
- High speed and high frequency boards
- Cavity in PCB with 2.5D[®] technology
- Embedded Component Packaging (ECP®)

1700~ Employees

40+

High-end Technology focus Years experience

High Product mix

AT&S HINTERBERG

Certifications

	EN 9100:2018		ISO/IEC
•	EN ISO		27001:2017
	50001:2018		NADCAP
	DS/EN ISO		Accreditation
	13485:2016		AEO Certificate
•	IATF 16949:2016		Sony Green
•	ISO 9001:2015		Partner Certificate
•	ISO 14001:2015		UL Listing
•	ISO 45001:2018	•	IPC-QL-653
	NOT THE REAL PROPERTY OF STREET, ST. THE	NEWLYCH	NAMES AND A STREET AND A STREET AND A STREET
a de la	- and - and -		State of the state

CAPABILITIES OVERVIEW*

Build-up	HDI up to 6-N-6 Anylayer up to 14 layers
Technology	ECP® - Embedded Component Packaging 2.5D® - Cavity in PCB mSAP HDI Multilayer Standard multilayer
PCB thickness	0.25mm - 3,2mm
Layer count	2 Layer - 26 Layer
Minimum line / spacing	50µm / 50µm; 20µm Copper 35µm / 35µm; 15µm Copper, mSAP
Smallest mechanical drill size	100µm
Smallest laser drill size	60µm
Solder mask	Green / Blue / Black / Red / White
Surface finish	ENIG OSP Immersion Tin ENEPIG Galvanic Nickel Hard Gold Immersion Silver HASL lead-free Carbon
Production format	18 x 24 Inch 21 x 24 Inch
Base material	FR4 from mid to high TG Halogen free materials RCF / Polyimide and PTFE Low CTE & low loss materials

Special technology and requirements on request ... *

AT&S SHANGHAI

The automotive and mobile PCB manufacturing site where high-end PCB technologies come to life.

Technologies

- HDI up to 6-n-6
- Anylayer up to 16 layers
- Substrate-Like PCB (SLP), L/S: 30µm
- High speed and high frequency boards
- Cavity in PCB with 2.5D[®] technology
- Embedded Component Packaging (ECP[®])

3900~ Employees

20+ Years experience

High-end Technology focus Automotive

HVM qualified

AT&S SHANGHAI

Certifications

 ANSI ESD S20.20
 QC080000:2017

 IATF 16949:2016
 Sony Green Partner

 ISO 9001:2015
 UL Listing

 ISO 14001:2015
 ISO 45001:2018

 ISO/IEC 27001:2013

45 AT&S Electronic Coast Event – 2024-10-31

CAPABILITIES OVERVIEW*

Build-up	HDI up to 6-N-6 Anylayer up to 16 layers
Technology	ECP [®] - Embedded Component Packaging 2.5D [®] - Cavity in PCB mSAP
PCB thickness	0.3mm - 1.6mm
Layer count	4 Layer - 16 Layer
Minimum line / spacing	40μm / 40μm; <15μm Copper 30μm / 30μm; 15μm Copper, mSAP
Smallest mechanical drill size	150µm
Smallest laser drill size	60µm
Solder mask	Green / Blue / Black Red - for samples only
Surface finish	ENIG OSP Immersion Tin ENEPIG Galvanic Nickel Hard Gold Immersion Silver
Production format	18 x 24 Inch 20 x 24 Inch 21 x 24 Inch 21.3 x 24.25 Inch for mSAP
Base material	FR4 from mid to high TG Halogen reduced materials Low Df / Dk materials Low CTE materials

Special technology and requirements on request ... *

AT&S FEHRING

From simple double-sided PCBs to highly complex flexible and high-frequency PCBs - Fehring supports them.

Technologies

- Standard 2 layer PTH
- Standard multilayer (4 16 Layers)
- High-Frequency PCBs
- Flexible and Semi-flexible PCBs
- Rigid-flex PCBs up to 6 layers
- HDI PCBs up to 1-N-1

400~ Employees

45+

Years experience

Flexible PCB

Technology focus

AT&S FEHRING

Certifications

		ISO 9 IATF ISO EN 13 5000 EN 9 DS/E 1348 ISO/ 2700	9001:201 16949:2 14001:20 SO 1:2018 100:2018 SN ISO 5:2016 EC 1:2017	5 • 016 • 15 •	ISO 45 AEO C Sony G Partnei UL List	001:2018 ertificate Green r Certifica ing	ate	
							°&S	AT&S
47	A	T&S	Electron	ic Coast	Event – 2	024-10-31		

CAPABILITIES OVERVIEW*

Build-up	Standard PCBs up to 16 layers HDI 1-N-1
Technology	Standard 2 layer PTH Standard multilayer (4 - 16 layers) High-Frequency PCBs Flexible and Semi-flexible PCBs Rigid-flex PCBs (2 - 6 layers)
PCB thickness	0.1mm - 2.4mm
Layer count	2 Layer - 16 Layer
Minimum line / spacing	80µm / 100µm; 18µm Copper
Smallest mechanical drill size	200µm
Solder mask	Rigid: Green / Blue / Black / Red / White / Matte White Flex: Yellow
Surface finish	ENIG ENEPIG Galvanic Nickel Hard Gold HASL lead-free Immersion Tin Immersion Silver OSP Carbon
Production format	18 x 24 Inch 21 x 24 Inch
Base material	FR4 from mid to high TG Teflon (High Frequency material) Polyimide

Special technology and requirements on request ... *

AT&S NANJANGUD

The state-of-the-art manufacturing facility in Nanjangud supports global electronics trends in the medical, automotive and industrial sectors with its high-end capabilities.

Technologies

- Standard multilayer PCBs (4 18 Layers)
- Double-sided PCBs with reinforcement
- HDI PCBs up to 4-N-4
- High frequency PCBs
- Cavity in PCB with 2.5D[®] technology

1400~ Employees

Years experience

20+

Automotive

Technology focus

AT&S NANJANGUD

Certifications

- ISO 9001:2015
 IATF 16949:2016
 ISO/IEC 27001:2013
- ISO 14001:2015 UL Listing
- ISO 45001:2018

CAPABILITIES OVERVIEW*

Build-up	Standard PCBs up to 18 layers HDI up to 4-N-4
Technology	Standard multilayer (4 - 18 layers) Double-sided PCBs with reinforcement HDI PCBs up to 4-N-4 High-Frequency PCBs Cavity in PCB with 2.5D® technology Standard 2 layer PTH
PCB thickness	0.5mm - 2.4mm
Layer count	2 Layer - 18 Layer
Minimum line / spacing	50µm / 50µm
Smallest mechanical drill size	200µm
Smallest laser drill size	100µm
Solder mask	Green / White / Red / Blue / Orange
Surface finish	ENIG OSP Immersion Tin HASL lead-free Electrolytic Hard-Gold Carbon
Production format	18 x 24 Inch 20 x 24 Inch 21 x 24 Inch
Base material	FR4 from mid to high TG Teflon (high frequency material)

Special technology and requirements on request ... *

CONTACT

AT&S Austria, Technologie & Systemtechnik AG

8700 Leoben, Fabriksgasse 13, Austria

Ƴ f in

Christoph Tassotti

SrSpecialist Application Engineer Business Unit Electronics Solutions

P +43 3842200 5618
 M +43 676 8955 5618
 E c.tassotti@ats.net

Erich Schlaffer

Programme Manager R&D Business Unit Electronics Solutions

P +43 3842200 5635
M +43 676 8955 4398
E e.schlaffer@ats.net

Electronic Coast Event – 2024-10-31

DISCLAIMER

This presentation is provided by AT & S Austria Technologie & Systemtechnik Aktiengesellschaft, having its headquarter at Fabriksgasse 13, 8700 Leoben, Austria, or one of its affiliated companies ("AT&S"), and the contents are proprietary to AT&S and for information only.

AT&S does not provide any representations or warranties with regard to this presentation or for the correctness and completeness of the statements contained therein, and no reliance may be placed for any purpose whatsoever on the information contained in this presentation, which has not been independently verified. You are expressly cautioned not to place undue reliance on this information.

This presentation may contain forward-looking statements which were made on the basis of the information available at the time of preparation and on management's expectations and assumptions. However, such statements are by their very nature subject to known and unknown risks and uncertainties. As a result, actual developments, results, performance or events may vary significantly from the statements contained explicitly or implicitly herein. Neither AT&S, nor any affiliated company, or any of their directors, officers, employees, advisors or agents accept any responsibility or liability (for negligence or otherwise) for any loss whatsoever out of the use of or otherwise in connection with this presentation. AT&S undertakes no obligation to update or revise any forward-looking statements, whether as a result of changed assumptions or expectations, new information or future events.

This presentation does not constitute a recommendation, an offer or invitation, or solicitation of an offer, to subscribe for or purchase any securities, and neither this presentation nor anything contained herein shall form the basis of any contract or commitment whatsoever. This presentation does not constitute any financial analysis or financial research and may not be construed to be or form part of a prospectus. This presentation is not directed at, or intended for distribution to or use by, any person or entity that is a citizen or resident or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would require any registration or licensing within such jurisdiction.